Identification of 6 dermatomyositis subgroups using principal component analysis‐based cluster analysis
نویسندگان
چکیده
منابع مشابه
hydrogeochemical analysis of bidkhan stream of bardsir (southeast iran) using principal component and cluster analyses
introduction thermodynamically, the surface waters in mountain environments are unstable and their chemical composition is a reflection of water-rock interactions. few studies have also been undertaken on the geochemistry of the surface waters in mountain environments. hence, this paper deals with the source of elements as well as the chemistry of the stream which drains from the caldera of bid...
متن کاملdemonstrating buried channels using principal component analysis
spectral decomposition of time series has a significant role in seismic data processing and interpretation. since the earth acts as a low-pass filter, it changes frequency content of passing seismic waves. conventional representing methods of signals in time domain and frequency domain cannot show time and frequency information simultaneously. time-frequency transforms upgraded spectral decompo...
متن کاملMultiresolution using principal component analysis
This paper proposes Principal Component Analysis (PCA) to find adaptive bases for multiresolution. An input image is decomposed into components (compressed images) which are uncorrelated and have maximum l2 energy. With only minor modification, a single layer linear network using the Generalized Hebbian Algorithm (GHA) is used for multiresolution PCA. The decomposition has been successfully app...
متن کاملPrincipal Component Analysis using R
This tutorial is designed to give the reader a short overview of Principal Component Analysis (PCA) using R. PCA is a useful statistical method that has found application in a variety of fields and is a common technique for finding patterns in data of high dimension. Consider we are confronted with the following situation: The data, we want to work with, are in form of a matrix (xij)i=1...N,j=1...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Rheumatic Diseases
سال: 2019
ISSN: 1756-1841,1756-185X
DOI: 10.1111/1756-185x.13609